– continuarea părții întâi –
d. Sistemele ireductibile
Biologii care au fundamentat ortodoxia darwinistă au considerat celula drept un bulgăre nediferenţiat de protoplasmă. Organismul (şi în special celula) reprezenta pentru ei un „black box”, o cutie neagră – o maşinărie care face lucruri minunate printr-un mecanism necunoscut pentru om. Biologul Michael J.Behe explică faptul că, la ora actuală, biochimiştii au ajuns să exploreze partea dinlăuntru al cutiei negre. Şi ce au găsit acolo se cheamă „complexitate ireductibilă”.
Orice om a văzut o capcană de şoricei. Ea este construită dintr-o scândurică (1), de care se prinde un arc terminat cu un „ciocan” (2), ce se blochează cu o piedică (3), care la rândul ei este conectată la un cârlig cu declanşator (4), în care se află o momeală (5). Dacă un singur element lipseşte, jucăria nu mai funcţionează. Capcana de şoricei este un sistem ireductibil.
La nivel molecular, viaţa este plină de asemenea sisteme. Cunoştinţele au devansat atât de mult darwinismul, încât biologii nici măcar nu încearcă să explice cum au putut să apară sistemele ireductibile în mecanismul evoluţiei lente.
„Când mă gândesc la ochiul omenesc, mă cutremur”, mărturisea Charles Darwin. Ochiul este în stare să efectueze 100.000 funcţii separate zilnic. El este un asemenea sistem ireductibil care sfidează evoluţia. Dacă ar fi nedezvoltat, ochiul ar fi total nefuncţional. Dezvoltarea anatomică gradată a ochiului omenesc este o imposibilitate, datorită multor trăsături sofisticate care depind unele de altele. Darwin mărturisea: “Cum devine un nerv sensibil la lumină ne preocupă azi mai mult decât originea vieţii însăşi”. Dar nu numai sub aspectul structurii anatomice a ochiului, lucrurile sunt uimitoare, ci şi a proceselor biochimice care însoţesc fiecare aspect.
Mai întâi, lumina loveşte retina. O moleculă retinală îşi schimbă imediat forma. Aceasta determină o altă proteină, rodopsina, să-şi schimbe forma. Această reacţie atrage o a doua proteină, transducin, care la rândul ei se leagă de fosfodiesterază, o a treia proteină. Această nouă moleculă formată reduce numărul ionilor pozitivi de sodiu. Rezultatul dezechilibrului de ioni de sodiu din interiorul celulei cauzează o încărcătură electrică care este transmisă la centrul optic, pe care computerul creier o interpretează – …şi noi vedem!
Dar nu există doar un singur tip de ochi! Există o sumedenie: de om, de caracatiţă, de vertebrate, de artropode, de trilobiţi… De exemplu, ochiul de trilobit. În timp ce ochiul uman are un singur cristalin, ochiul de trilobit e compus dintr-o mulţime de lentile duble, până la 15.000 lentile separate în fiecare ochi. Miliardele de ani de evoluţie lentă nu puteau elabora ceva atât de complex.
Un alt sistem ireductibil este organul de reproducere. Profesorul Howard Peth se întreabă: „Cum ar fi putut organe sexuale feminine şi masculine – care se completează perfect – să apară gradat, în paralel, dar rămânând cu totul inutile până la completa lor dezvoltare?”
În numărul din 24 februarie, 1984, revista „Discover” [10] readuce în atenţie unul din cele mai dureroase mistere ale evoluţiei. După doctrina darwinistă, supravieţuirea speciei este asigurată de adaptare, precum şi de transmiterea cât mai eficientă a moştenirii genetice. Dar înmulţirea sexuată este o metodă ineficientă şi extrem de riscantă. Ea cere o mare cantitate dezordonată de timp şi energie. Iar faptul că înmulţirea sexuată înjumătăţeşte moştenirea de informaţii genetice a părintelui contrazice principiul biologic de bază al evoluţionismului: anume că scopul principal al organismului este să transmită progeniturii cât mai multe din genele proprii cu putinţă. În contrast cu înmulţirea sexuată, reproducerea asexuată este o cale mult mai simplă, mai rapidă, mai eficientă cale de reproducere, care permit creaturii să se replice pe sine fără ajutorul unui semen şi apoi să-i transmită descendenţilor toate genele sale. Conform darwinismului, speciile cu înmulţire sexuată ar fi trebuit să dispară demult în faţa celor asexuate.
e. Probabilitatea
Evoluţionismul consideră „şansa”, sau probabilitatea fericită, ca fiind principiul fundamental pentru apariţia vieţii cât şi pentru salturile evolutive de la un stadiu la următorul. Şansa îndeplinirii tuturor condiţiilor pentru realizarea unor sisteme ireductibile ca: aminoacidul, celula, organele, organismele homeoterme, reproducerea vivipară, etc… este inimaginabil de infimă.
Probabilitatea apariţiei spontane a numai 200 enzime cât este necesar pentru apariţia unei celule primare a fost calculată la 1/10 40.000. Compară această probabilitate imposibilă cu vârsta acceptată a universului în teoria Big-Bangului, de 1/1017 secunde. Dacă ar fi să acordăm fiecărei probabilităţi o singură secundă, timpul n-ar ajunge nici pentru realizarea primului pas, de la Anorganic la Organic, cu atât mai puţin pentru tot restul de cortegiu de salturi evolutive. Sir Fred Hoyle spunea: „Acest lucru este la fel de ridicol şi improbabil ca presupunerea că un tornado, bântuind un depozit de fiare vechi, să asambleze un Boeing 747”.
„Matematicienii sunt de acord că, din punct de vedere statistic, orice probabilitate mai mare de 1060 este „nulă”. Oricare din speciile cunoscute, incluzând chiar şi bacteria unicelulară, are un număr enorm de nucleotizi, nu 100 sau 1000. De fapt, o bacterie unicelulară are cca. 3 milioane de nucleotizi, aliniaţi într-o succesiune foarte exactă şi specifică. Aceasta înseamnă că nu există probabilitate matematică pentru nici una din speciile cunoscute, pentru o apariţie întâmplătoare prin mutaţii întâmplătoare”. [11]
„Selectarea la pura întâmplare a proteinelor corespunzătoare, şi acestea toate dextrogire, şi apoi plasarea lor în secvenţa specifică într-o moleculă, tot prin hazard, ar solicita un număr de 1/1089190 molecule de ADN (în medie) pentru a oferi o singură şansă de formare a secvenţei specifice de ADN capabilă să codeze cele 124 proteine. 1/1089190 de molecule ar cântări de 1/1089147 ori greutatea pământului, cantitate suficientă pentru a umple universul de câteva ori. Se apreciază că totala cantitate de ADN, necesară pentru codarea a 100 miliarde de fiinţe umane, ar putea ocupa un spaţiu mic cât o jumătate de tabletă de aspirină. Cantitatea de ADN cântărind de 1/1089147 ori cât pământul este absurd de mare. Ea doar subliniază cât de mică este şansa apariţiei unei singure molecule de ADN la întâmplare.” [12]
„Orice încercare de a concepe o teorie evoluţionistă a codului genetic este zadarnică, întrucât codul acesta este lipsit de funcţionalitate dacă nu este „tradus”, adică dacă nu conduce la sinteza proteinelor. Dar maşinăria prin care celula traduce codul este alcătuită din aproximativ 70 de componente care ele însele sunt produsul tot al codului!” [13]
Ca să evite aceste absurdităţi, ştiinţa ipotetică propune o serie de alte modele: că protozoorul iniţial ar fi fost mult mai simplu decât ne putem noi imagina, bazat pe un alt sistem de auto-replicare decât ADN/ARN; că universul ar fi existat într-un nesfârşit ciclu de Big Bang şi Big Plop, din care în mod fericit, am scăpat noi…; sau chiar„pan-spermia” – că viaţă ar fi poposit pe pământ venind din altă parte a universului.
f. Informaţia
Evoluţioniştii nu realizează că, pe lângă domeniul materiei, ei au de a face şi cu un al doilea domeniu cel puţin la fel de incomensurabil: domeniul informaţiei. Aceste două domenii nu pot fi niciodată suprapuse prin vreun fel de reducţionism. Gena este un pachet de informaţii, nu un obiect. Modelul de baze perechi din molecula de ADN îi dă genei specificul. Dar, atenţie, molecula de ADN este mediumul, nu şi mesajul. Este ca şi cu banda magnetică a casetofonului, care reprezintă suportul material pentru informaţia care este cu totul altceva decât suportul dat. Păstrarea acestei distincţii între medium şi mesaj este absolut indispensabilă pentru clarificarea ideii de „evoluţie”. Pentru a explica viaţa, trebuie să explicăm nu doar originea substanţelor chimice, ci şi originea informaţiei.
Un om este alcătuit din trilioane de celule diferite, organizate într-o maşinărie de mare precizie. Fiecare celulă are câte un nucleu. Iar fiecare nucleu conţine o bază digitală de date care cuprinde mai multă informaţie decât toate cele 30 volume ale Enciclopediei Britanice.
Toate fiinţele depind de relaţia activă dintre moleculele de acid nucleic moştenit – ADN – şi moleculele de proteine, materialul de construcţie. Ca să producă proteine, fiinţele vii se folosesc de secvenţele de ADN prin care îşi aliniază o secvenţă corespunzătoare de grupe de aminoacizi. Dar în mod natural, ADN-ul şi proteine reacţionează contrar acestei ordini, în sensul distrugerii sistemului viu. După cum fosforul, sticla şi cuprul nu se caută ca să formeze automat o structură numită „televizor”, decât numai dacă sunt aranjate de o inteligenţă exterioară lor, tot aşa ADN-ul şi proteina ajung să intre într-o relaţie constructivă numai dacă sunt controlate de o informaţie exterioară lor.
Nucleotidele esenţiale pentru construirea de molecule de ARN şi ADN cer condiţii radical diferite pentru asamblarea lor. Citozina şi uracilul ARN-ului au nevoie de temperaturi de fierbere a apei, în timp ce adenina şi guanina au nevoie de temperaturi de îngheţ. În condiţii naturale, cele patru elemente de construcţie nu se pot în veci corela singure, în acelaşi loc şi în concentraţii adecvate.
Asamblarea celei mai simple componente care stă la baza vieţii, integrând aminoacizii – care sunt levogiri [14] – cu zaharurile nucleotide – care sunt dextrogiri – nu poate avea niciodată loc „in vitro” [15], decât „in vivo”. Pentru a se produce combinaţia, este nevoie de participarea unei enzime, ea însăşi o proteină care trebuie să fie codată genetic pentru o operaţiune specifică.
Problemele pe care le ridică macro-cosmosul nu sunt nici ele mai mici sau mai puţine decât problemele micro-cosmosului. Andreas Tammann, profesor de astronomie la Universitatea din Basel era citat de revista „Der Spiegel” astfel: „Universul este atât de incredibil de bine construit, încât trebuie să fi fost planificat. Dacă, de exemplu, densitatea materiei în momentul Big-bang-ului ar fi fost cu numai o 0,1040-ime mai mare, la scurt timp universul s-ar fi prăbuşit.“
Iar savantul în fizica particulelor, John Polkinghorne, distins cu premiul Templeton pentru anul 2002, scria: „Dacă puterea gravitaţiei, sau sarcina unui electron, sau masa unui proton… ar varia cu numai foarte puţin, n-ar exista nici atomi şi nici stele şi nici viaţă! Extrem de finul acord al legilor naturii mă conduce la concluzia că în spatele naturii nu se află întâmplarea, ci un proiect inteligent”.
Creaţionismul biblic se mai cheamă şi “Teoria destinului inteligent” [16]. O credinţă a bunului simţ socoteşte că numai o Inteligenţă putea să sfideze tiparul simplist evoluţionist al unei „cea mai sigură şi adaptată soluţie” şi să diversifice opera sa atât de creator, încât: la cele 457 specii de rechini, există şi reproducerea ovipară, şi cea vivipară [17], cât şi una ovo-vivipară; şerpii sunt ovipari, nu şi viperele: ele nasc puii vii; există patru tipuri de aripi cu patru tipuri de zbor [18]… Natura este mărturia unui spirit creativ nelimitat.
– finalul celei de-a doua părți –